Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167314, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37742979

RESUMO

Indium tin oxide (ITO) is a semiconductor nanomaterial with broad application in liquid crystal displays, solar cells, and electrochemical immune sensors. It is worth noting that, with the gradual increase in worker exposure opportunities, the exposure risk in occupational production cannot be ignored. At present, the toxicity of ITO mainly focuses on respiratory toxicity. ITO inhaled through the upper respiratory tract can cause pathological changes such as interstitial pneumonia and pulmonary fibrosis. Still, extrapulmonary toxicity after nanoscale ITO nanoparticle (ITO NPs) exposure, such as long-term effects on the central nervous system, should also be of concern. Therefore, we set up exposure dose experiments (0 mg·kg-1, 3.6 mg·kg-1, and 36 mg·kg-1) based on occupational exposure limits to treat C57BL/6 mice via nasal drops for 15 weeks. Moreover, we conducted a preliminary assessment of the neurotoxicity of ITO NPs (20-30 nm) in vivo. The results indicated that ITO NPs can cause diffuse inflammatory infiltrates in brain tissue, increased glial cell responsiveness, abnormal neuronal cell lineage transition, neuronal migration disorders, and neuronal apoptosis related to the oxidative stress induced by ITO NPs exposure. Hence, our findings provide useful information for the fuller risk assessment of ITO NPs after occupational exposure.


Assuntos
Nanopartículas , Traumatismos do Sistema Nervoso , Camundongos , Animais , Camundongos Endogâmicos C57BL , Compostos de Estanho/toxicidade , Nanopartículas/toxicidade , Encéfalo , Índio
2.
NanoImpact ; 25: 100392, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559896

RESUMO

Quantum dots (QDs), also known as semiconductor QDs, have specific photoelectricproperties which find application in bioimaging, solar cells, and light-emitting diodes (LEDs). However, the application of QDs is often limited by issues related to health risks and potential toxicity. The purpose of this study was to provide evidence regarding the safety of cadmium telluride (CdTe) QDs by exploring the detailed mechanisms involved in its hepatotoxicity. This study showed that CdTe QDs can increase reactive oxygen species (ROS) in hepatocytes after being taken up by hepatocytes, which triggers a significant mitochondrial-dependent apoptotic pathway, leading to hepatocyte apoptosis. CdTe QDs-induce mitochondrial cristae abnormality, adenosine triphosphate (ATP) depletion, and mitochondrial membrane potential (MMP) depolarization. Meanwhile, CdTe QDs can change the morphology, function, and quantity of mitochondria by reducing fission and intimal fusion. Importantly, inhibition of ROS not only protects hepatocyte viability but can also interfere with apoptosis and activation of mitochondrial dysfunction. Similarly, the exposure of CdTe QDs in Institute of Cancer Research (ICR) mice showed that CdTe QDs caused oxidative damage and apoptosis in liver tissue. NAC could effectively remove excess ROS could reduce the level of oxidative stress and significantly alleviate CdTe QDs-induced hepatotoxicity in vivo. CdTe QDs-induced hepatotoxicity may originate from the generation of intracellular ROS, leading to mitochondrial dysfunction and apoptosis, which was potentially regulated by mitochondrial dynamics. This study revealed the nanobiological effects of CdTe QDs and the intricate mechanisms involved in its toxicity at the tissue, cell, and subcellular levels and provides information for narrowing the gap between in vitro and in vivo animal studies and a safety assessment of QDs.


Assuntos
Compostos de Cádmio , Doença Hepática Induzida por Substâncias e Drogas , Pontos Quânticos , Animais , Apoptose , Compostos de Cádmio/toxicidade , Camundongos , Mitocôndrias , Pontos Quânticos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Telúrio/toxicidade
3.
Chemosphere ; 300: 134627, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35439484

RESUMO

Once released into water, the widely used graphene oxide (GO) is likely to adsorb classical environmental pollutants, exemplified by Microcystin-LR (MCLR) that is a representative double-bond rich liver-toxic endotoxin. While GO-mediated carrier effect is fairly predictable, the involvement of environmental factors like UV and pH may add additional level of sophistication as these factors may impact the adsorption capacity of GO to MCLR. Here, we firstly investigated the changes of GO structure under different UV-radiation durations and pH conditions with a view to establish the correlation in terms of MCLR adsorption onto GO. We demonstrated that GO reduction especially oxygen-containing groups reduction induced by UV- radiation caused the compromised adsorption MCLR capacity on GO. Besides, the higher pH decreased the non-biological MCLR adsorption to GO by reducing GO defect sites and increasing electrostatic repulsion. These abiotic discoveries were further investigated to compare the safety features of GO-MCLR complex. Under dark condition (pH = 7), we revealed the cytotoxicity of GO-MCLR to normal liver cells, which involved the ROS generation and cell ferroptosis caused by Fe2+ accumulation. Introduction of UV and pH alternation in environment impacted GO-mediated environmental toxicant adsorption and resulting safety characteristics, which reminded us environmental factors should not be ignored in the GO-mediated carrier effect.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Grafite/química , Grafite/toxicidade , Substâncias Perigosas , Concentração de Íons de Hidrogênio , Microcistinas/química , Microcistinas/toxicidade , Raios Ultravioleta , Poluentes Químicos da Água/análise
4.
Part Fibre Toxicol ; 19(1): 26, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392949

RESUMO

BACKGROUND: Nanomaterials have been widely used in electrochemistry, sensors, medicine among others applications, causing its inevitable environmental exposure. A raising question is the "carrier" effect due to unique surface properties of nanomaterials, which may collectively impact the bioavailability, toxicokinetic, distribution and biological effects of classic toxicants. Noteworthy, this aspect of information remains largely unexplored. METHODS: Here, we deliberately selected two entities to mimic this scenario. One is graphene oxide (GO), which is made in ton quantity with huge surface-area that provides hydrophilicity and π-π interaction to certain chemicals of unique structures. The other is Microcystin-LR (MCLR), a representative double-bond rich liver-toxic endotoxin widely distributed in aquatic-system. Firstly, the adsorption of GO and MCLR after meeting under environmental conditions was explored, and then we focused on the toxicological effect and related mechanism of GO-MCLR complex on human skin cutin forming cells (HaCaT cells) and normal liver cells (L02 cells). RESULTS: Abiotically, our study demonstrated that GO could effectively adsorb MCLR through hydrogen bonding and π-π interaction, the oxidation degree of GO-MCLR decreased significantly and surface defect level raised. Compared to GO or MCLR, GO-MCLR was found to induce more remarkable apoptosis and ferroptosis in both HaCaT and L02 cells. The underlying mechanism was that GO-MCLR induced stronger intracellular reactive oxygen species (ROS) and mtROS generation, followed by Fe2+ accumulation, mitochondrial dysfunction and cytoskeletal damage. CONCLUSIONS: These results suggest that the GO-MCLR complex formed by GO adsorption of MCLR may exhibit more toxic effects than the single material, which demonstrates the necessity for assessing nano-toxicant complexity. Our discovery may serve as a new toxicological paradigm in which nanomaterial mediated surface adsorption effects could impact the degree of cytotoxicity and toxicological mechanisms of classic toxins.


Assuntos
Grafite , Microcistinas , Grafite/toxicidade , Humanos , Toxinas Marinhas/toxicidade , Microcistinas/química , Microcistinas/toxicidade
5.
Redox Biol ; 47: 102157, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34614473

RESUMO

Cadmium telluride (CdTe) quantum dots (QDs) can be employed as imaging and drug delivery tools; however, the toxic effects and mechanisms of low-dose exposure are unclear. Therefore, this pioneering study focused on hepatic macrophages (Kupffer cells, KCs) and explored the potential damage process induced by exposure to low-dose CdTe QDs. In vivo results showed that both 2.5 µM/kg·bw and 10 µM/kg·bw could both activate KCs to cause liver injury, and produce inflammation by disturbing antioxidant levels. Abnormal liver function further verified the risks of low-dose exposure to CdTe QDs. The KC model demonstrated that low-dose CdTe QDs (0 nM, 5 nM and 50 nM) can be absorbed by cells and cause severe reactive oxygen species (ROS) production, oxidative stress, and inflammation. Additionally, the expression of NF-κB, caspase-1, and NLRP3 were decreased after pretreatment with ROS scavenging agent N-acetylcysteine (NAC, 5 mM pretreated for 2 h) and the NF-κB nuclear translocation inhibitor Dehydroxymethylepoxyquinomicin (DHMEQ, 10 µg/mL pretreatment for 4 h) respectively. The results indicate that the activation of the NF-κB pathway by ROS not only directly promotes the expression of inflammatory factors such as pro-IL-1ß, TNF-α, and IL-6, but also mediates the assembly of NLRP3 by ROS activation of NF-κB pathway, which indirectly promotes the expression of NLRP3. Finally, a high-degree of overlap between the expression of the NF-κB and NLRP3 and the activated regions of KCs, further support the importance of KCs in inflammation induced by low-dose CdTe QDs.


Assuntos
Compostos de Cádmio , Doença Hepática Induzida por Substâncias e Drogas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pontos Quânticos , Compostos de Cádmio/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Humanos , Inflamassomos , NF-kappa B , Pontos Quânticos/toxicidade , Espécies Reativas de Oxigênio , Telúrio/toxicidade
6.
Environ Pollut ; 290: 117993, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34428702

RESUMO

Indium tin oxide (ITO) is an important semiconductor material, because of increasing commercial products consumption and potentially exposed workers worldwide. So, urgently we need to assess and manage potential health risks of ITO. Although the Occupational Exposure Limit (OEL) has been established for ITO exposure, there is still a lack of distinguishing the risks of exposure to particles of different sizes. Therefore, obtaining toxicological data of small-sized particles will help to improve its risk assessment data. Important questions raised in quantitative risk assessments for ITO particles are whether biodistribution of ITO particles is affected by particle size and to what extent systematic adverse responses is subsequently initiated. In order to determine whether this toxicological paradigm for size is relevant in ITO toxic effect, we performed comparative studies on the toxicokinetics and sub-acute toxicity test of ITO in mice. The results indicate both sized-ITO resided in the lung tissue and slowly excreted from the mice, and the smaller size of ITO being cleared more slowly. Only a little ITO was transferred to other organs, especially with higher blood flow. Two type of ITO which deposit in the lung mainly impacts respiratory system and may injure liver or kidney. After sub-acute exposure to ITO, inflammation featured by neutrophils infiltration and fibrosis with both dose and size effects have been observed. Our findings revealed toxicokinetics and dose-dependent pulmonary toxicity in mice via oropharyngeal aspiration exposure, also replenish in vivo risk assessment of ITO. Collectively, these data indicate that under the current OEL, there are potential toxic effects after exposure to the ITO particles. The observed size-dependent biodistribution patterns and toxic effect might be important for approaching the hazard potential of small-sized ITO in an occupational environment.


Assuntos
Compostos de Estanho , Animais , Camundongos , Tamanho da Partícula , Compostos de Estanho/toxicidade , Distribuição Tecidual , Toxicocinética
7.
Sci Total Environ ; 772: 145475, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33770885

RESUMO

Electronic cigarettes (E-cigarette) are an alternative for traditional cigarette smokers to quit smoking. Based on the current understanding, electronic cigarettes have rapidly become popular among existing smokers and former non-smokers. However, increasing research at different levels reveals that e-cigarettes are unsafe. This review provides an overview of the toxicology of e-cigarettes based on existing in vivo and in vitro studies and compares their toxicity with that of traditional cigarettes. Moreover, we describe the associated toxicity components in e-cigarettes, as well as the potential mechanism by which e-cigarettes exert toxic effects. As is known to all, the nicotine in traditional cigarettes and e-cigarettes has certain toxicity. Besides, a few studies have shown that propylene glycol and vegetable glycerin mixture and flavoring agents in e-cigarettes also are the key components causing adverse effects in animals or cells. There is insufficient scientific evidence on the toxicity of e-cigarettes due to the lack of standardized research methods, prompting the need to conduct a comprehensive toxicity assessment of e-cigarette toxicity to elucidate the safety issues of e-cigarettes. Eventually, a basis for decision-making on whether people use e-cigarettes will be obtained.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Animais , Glicerol , Nicotina/toxicidade , Fumar
8.
Environ Pollut ; 274: 115681, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33308872

RESUMO

Quantum dots (QDs) are nanoparticles of inorganic semiconductors and have great promise in various applications. Many studies have indicated that mitochondria are the main organelles for the distribution and toxic effects of QDs. However, the underlying mechanism of QDs interacting with mitochondria and affecting their function is unknown. Here, we report the mechanism of toxic effects of 3-mercaptopropionic acid (MPA)-capped CdTe QDs on mitochondria. Human liver carcinoma (HepG2) cells were exposed to 25, 50 and 100 µmol/L of MPA-capped CdTe QDs. The results indicated that MPA-capped CdTe QDs inhibited HepG2 cell proliferation and increased the extracellular release of LDH in a concentration-dependent manner. Furthermore, MPA-capped CdTe QDs caused reactive oxygen species (ROS) generation and cell damage through intrinsic apoptotic pathway. MPA-capped CdTe QDs can also lead to the destruction of mitochondrial cristae, elevation of intracellular Ca2+ levels, decreased mitochondrial transmembrane potential and ATP production. Finally, we showed that MPA-capped CdTe QDs inhibited mitochondrial fission, mitochondrial inner membrane fusion and mitophagy. Taken together, MPA-capped CdTe QDs induced significant mitochondrial dysfunction, which may be caused by imbalanced mitochondrial fission/fusion and mitophagy inhibition. These findings provide insights into the regulatory mechanisms involved in MPA-capped CdTe QDs-induced mitochondrial dysfunction.


Assuntos
Compostos de Cádmio , Neoplasias Hepáticas , Pontos Quânticos , Compostos de Cádmio/toxicidade , Linhagem Celular , Humanos , Dinâmica Mitocondrial , Mitofagia , Pontos Quânticos/toxicidade , Telúrio/toxicidade
9.
Chemosphere ; 251: 126440, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32169699

RESUMO

Carbon dots (CDs) are an emerging fluorescent nano-imaging probe due to their unique characteristics, such as good conductivity, carbon-based chemical composition, and photochemical stability, which sets up the potential of outperforming the classic metal-based quantum dots (QDs). It is a timely effort to proactively investigate the biocompatibility feature of CDs with a view to safely utilize this emerging nanomaterial in biological systems. In this study, we assessed the safety profile of an in-house synthesized CDs in hepatocyte-like Hepa 1-6 cells, which represents an important target organ for CDs exposure through either particle uptake and/or accumulation and elimination from primary exposure sites post particle administration. We not only demonstrated a dose- and time-dependent compromised cell viability, but also observed the induction of autophagy at high concentration (i.e. 400 µg mL-1), authenticated by the conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II. We attributed these changes as the protective mechanism by which the cells used to compensate for CDs-induced apoptosis and cytotoxicity. The involvement of autophagy was further confirmed because the cytotoxicity profile can be increased or reduced by the use of 3-MA (autophagy inhibitor) and NAC (ROS inhibitor), respectively. Collectively, our findings revealed dose-dependent moderate cytotoxicity in Hepa 1-6 cells. Mechanistic understanding of autophagy during the cellular process revealed the homeostasis when liver cells deal with CDs as an external insult.


Assuntos
Pontos Quânticos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Animais , Autofagia , Carbono/química , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Corantes Fluorescentes , Hepatócitos/metabolismo , Metais , Camundongos Endogâmicos C57BL , Nanoestruturas , Pontos Quânticos/química
10.
Sci Total Environ ; 702: 134994, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31715400

RESUMO

In recent years, nanomaterials have been widely applied in electronics, food, biomedicine and other fields, resulting in increased human exposure and consequent research focus on their biological and toxic effects. Mitochondria, the main target organelle for nanomaterials (NM), play a critical role in their toxic activities. Several studies to date have shown that nanomaterials cause alterations in mitochondrial morphology, mitochondrial membrane potential, opening of the mitochondrial permeability transition pore (MPTP) and mitochondrial respiratory function, and promote cytochrome C release. An earlier mitochondrial toxicity study of NMs additionally reported induction of mitochondrial dynamic changes. Here, we have reviewed the mitochondrial toxicity of NMs and provided a scientific basis for the contribution of mitochondria to the toxicological effects of different NMs along with approaches to reduce mitochondrial and, consequently, overall toxicity of NMs.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Nanoestruturas , Humanos , Mitocôndrias , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial
11.
Zhongguo Zhong Yao Za Zhi ; 37(10): 1431-3, 2012 May.
Artigo em Chinês | MEDLINE | ID: mdl-22860456

RESUMO

OBJECTIVE: To establish method for determining the contents of alpha-pinene and octyl acetate in Boswellia serrata, in order to provide preference for making quality standards for B. serrata and processed B. serrata. METHOD: Application of orthogonal design was employed to optimize the solvent, solvent quantity and extraction time. The GC-MS analysis was performed on a Rxi-5ms silica capillary column, running in the electron impact (EI) mode, with ion trap and injector temperature of 200 degrees C and 250 degrees C, respectively. The column oven was initially 50 degrees C and was held for 1 min after injection, followed by temperature ramping at 5 degrees C x min(-1) up to 130 degrees C, holding for 1 min. 1 microL of samples solution were injected in the split mode (1:60). Helium was the carrier gas. The mass spectrometer was set to scan m/z 45450 with an ionizing voltage at 70 eV. RESULT: Sample solutions were prepared for 50-fold dose by ultrasonic extraction with hexane for 30 min. The content of alpha-pinene and octyl acetate in 10 batches of B. serrata were 0.021 3-0.149 5, 2.519 6-9.098 0 mg x g(-1), respectively. And, those of alpha-pinene and octyl acetate in processed B. serrata were 0.015 9-0.065 9, 0.801 0-12.812 2 mg x g(-1). CONCLUSION: The method is a stable and reliable for determining the contents of alpha-pinene and octyl acetate in B. serrata.


Assuntos
Acetatos/análise , Boswellia/química , Monoterpenos/análise , Monoterpenos Bicíclicos , Cromatografia Gasosa-Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...